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ABSTRACT

The release of chemical, biological, radiological, or
nuclear (CBRN) agents by terrorists or rogue states
in a North American city (densely populated urban
centre) and the subsequent exposure, deposition, and
contamination are emerging threats in an uncertain
world. The transport, dispersion, deposition, and
fate of a CBRN agent released in an urban environ-
ment is an extremely complex problem that encom-
passes potentially multiple space and time scales. The
availability of high-fidelity, time-dependent models
for the prediction of a CBRN agent’s movement and
fate in a complex urban environment can provide the
strongest technical and scientific foundation for sup-
port of Canada’s more broadly based effort at advanc-
ing counter-terrorism planning and operational capa-
bilities.

The objective of this paper is to report the progress
of developing and validating an integrated, state-of-
the-art, high-fidelity multi-scale, multi-physics mod-
eling system for the accurate and efficient prediction
of urban flow and dispersion of CBRN materials. De-
velopment of this proposed multi-scale modeling sys-
tem will provide the real-time modeling and simula-
tion tool required to predict injuries, casualties, and
contamination and to make relevant decisions (based
on the strongest technical and scientific foundations)
in order to minimize the consequences of a CBRN
incident based on a pre-determined decision making
framework.

1 INTRODUCTION

Atmospheric transport and diffusion models have
played an important role in emergency response sys-
tems. These models have been developed to reliably
and promptly calculate the transport, diffusion, and de-
position of toxic chemical, biological, or radiological
materials released (either accidentally or deliberately)
into the turbulent atmospheric boundary layer over rel-
atively smooth and homogeneous surfaces. In particu-
lar, all military and civilian (government and commer-
cial) emergency response models employ either em-
pirical relationships based on similarity theory for the
mean wind flow and turbulence in the boundary-layer,
or use simple diagnostic wind fields that are obtained
by extrapolation and/or interpolation of sparse obser-
vational data. The advantages of these approaches
for wind flow specification required to “drive” dis-
persion models are their simplicity, general applica-
bility in simple atmospheric conditions, and most im-
portantly, their limited computational demands. While
this approach is useful for a landscape that is approxi-
mately flat and unobstructed, it is wholly inadequate
for surface-atmosphere interactions over “complex”
surfaces (i.e., most of the real world) such as cities and
other built-up areas.

To address the urgent problem of modeling of the dis-
persion of CBRN agents in the urban complex, char-
acterized by extremely diverse length and time scales
and complex geometries and interfaces, we require
physically-based urban wind models that will be able
to provide the needed spatial pattern of urban wind
statistics. In this study, we report progress in the de-
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velopment of a high-fidelity multi-scale, multi-physics
modeling system for the accurate and efficient pre-
diction of urban flow and dispersion of CBRN mate-
rials. The outline of this paper is as follows. Sec-
tion 2 summarizes the dispersion models used to pre-
dict both continuous and instantaneous releases of con-
taminant material. The drag-force approach will be
presented in Section 3 whereby groups of buildings
in the array are aggregated into a number of ‘drag
units’ with the ensemble of units treated simply as
a spatially continuous porous medium for the pre-
diction of the time-mean spatially-averaged statistics
of the mean flow and turbulence in the urban com-
plex. The numerical framework underlying the urban
microscale flow model (urbanSTREAM) is described
in Section 4. Section 5 addresses work in progress
which is summarized in four sub-sections which deal,
respectively, with Large-Eddy Simulation (LES) and
its variants, the inverse source determination problem,
adaptive mesh refinement (AMR), and coupling ur-
banSTREAM to a mesoscale flow model. Finally, Sec-
tion 6 contains conclusions.

2 DISPERSION MODELING

The governing equations of mass, momentum, and
concentration (of a passive scalar) for incompress-
ible and neutrally-stratified fluid flow based on the
Reynolds-averaged Navier-Stokes (RANS) approach
are

∂ ūj

∂x j
� 0� (1)
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where an overbar denotes the Reynolds averaging of a
quantity and a prime on a quantity is used to denote the
departure of that quantity from its Reynolds-averaged
value. Here, ūi is the mean velocity in the xi-direction,
t is time, p̄ is the kinematic pressure, ν is the kinematic
viscosity, c̄ is the mean concentration of the passive
scalar, D is the molecular diffusivity of the scalar, and
S is the source density distribution of the tracer. Unless
otherwise noted, the xi-direction with i=1, 2, or 3 will
be used to represent the streamwise x, spanwise y, or
vertical z directions, respectively; and, u, v, and w will
be used to denote the velocity components in the x-, y-,
and z-directions, respectively.

Within the framework of the standard (high-Re) k-ε
model, the Reynolds stresses u�

iu
�
j and the turbulent

scalar fluxes u�
jc

�, required to close the transport equa-
tions for the mean momentum and mean concentra-
tion, are modeled using the gradient diffusion hypoth-
esis as follows:
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where νt �Cµk2�ε is the kinematic eddy (or, turbulent)
viscosity, Cµ � 0�09 is a model (closure) constant,σc �

0�63 is the turbulent Schmidt number, k � u �
iu

�
i�2 is

the turbulence kinetic energy, ε is the dissipation rate
of turbulence kinetic energy, and δ i j is the Kronecker
delta function.

The transport equations for the turbulence quantities k
and ε are
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where σk � 1�0, σε � 1�3, Cε1 � 1�44, and Cε2 � 1�92
are model (closure) constants, and the turbulence ki-
netic energy production term Pk in Eq. (6) is defined as
Pk ��u�

iu
�
j
∂ ūi
∂x j

The transport equation for the concentration variance

c�2 of a passive scalar can be written as
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where εc is the scalar variance dissipation rate de-

fined by εc � 2D ∂c�
∂x j

∂c�
∂x j

. As in the transport equation
for the mean concentration (advection-diffusion equa-
tion), the turbulent flux of concentration variance is
modeled using the gradient diffusion approach as

u�
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�2 ��
νt

σc

∂c�2

∂x j
� (9)
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The critical term in the closure of the transport equa-
tion of the concentration variance [cf. Eq. (8)] is ε c

which represents the dissipation of c �2 by molecular
diffusion in the fine-scale scalar structure. This is a
term responsible for micromixing of the scalar and, as
such, corresponds to a small-scale term controlled by
the scalar gradient correlations. This term will be mod-
eled algebraically using an expression with the general

form εc � c�2�td , where td is an appropriately defined
dissipation time scale that is characteristic of the de-
cay time of the concentration fluctuations in the scalar
field. In the present study, two models are used to de-
scribe the scalar dissipation time scale.

Model 1: In this model,

εc �Cχ
ε
k

c�2 (10)

where Cχ is a model constant that represents the ratio
of the turbulence integral time scale to the scalar dis-
sipation time scale. In the present study, we will use
Cχ � 2, as suggested by [5] in our simulations of the
scalar variance field.

Model 2: In this model,

εc �Cχ
k1�2

Λd
c�2 (11)

where Λd is the dissipation length scale in the dispers-
ing plume or cloud (puff). Equivalently, in this model,
td is proportional to Λd�k1�2. In the present study, we
propose to use a simple algebraic formulation for the
dissipation length scale; namely,

Λd � �σy�x�σz�x��
1�2 (for a plume)� (12)

and

Λd � �σx�t�σy�t�σz�t��
1�3 (for a cloud or puff)� (13)

where σx, σy, and σz are the plume or puff spreads
(standard deviations) of the mean concentration dis-
tribution in the x-, y-, and z-directions, respectively.
The closure constant Cχ is equal to 1.25 and 2.1 for a
plume and cloud (puff), respectively. These values for
Cχ were chosen to give the best conformance with the
available data for the MUST array, and in particular,
were chosen to ensure the best fit to the decay of the
plume or cloud centreline fluctuation intensity (ratio of
the concentration standard deviation to the mean con-
centration) with downstream distance from the source.

Fig. 1 shows the geometry of the Mock Urban Setting
Test (MUST) array [19] and source location. This full-
scale atmospheric experiment was replicated at a scale
of 1:205 in a boundary-layer water channel by Coanda
Research & Development Corporation (Burnaby, BC,
Canada). Sample results for the instantaneous release
(puff) case only, obtained with a 203� 45� 43 grid,
are given in Fig. 2 in terms of the vertical profiles of
streamwise velocity ū at y � 0 (vertical centre plane
of the array) and the horizontal profiles of total dosage
at z�H � 0�75 (H is the height of the obstacles) at the
6.5 row location. Fig. 2 also shows time histories of
normalized mean concentration ( c̄�cs) and normalized
concentration standard deviation (c �

rms�cs) profiles at
y�H � 0� z�H � 0�75 at the 6.5 row location. The total
dosage is defined as

dose �
� T

0
c̄dt� (14)

where T is a time interval that is chosen to be suf-
ficiently long so as to include the duration (time in-
terval) between the arrival time and departure time of
the cloud (puff) at the given receptor location where
the dosage is calculated (or, measured). As seen,
excellent agreement between the predicted and mea-
sured ū-profiles is achieved. Fig. 2 also shows that
the time history of c̄�cs and the profile of horizontal
dosage are reasonably well predicted by solving a sim-
ple advection-diffusion equation (Eq. 3). In the case
of c�rms�cs prediction, Model 2 is clearly better than
Model 1 and is therefore recommended in the present
study.

3 DRAG-FORCE APPROACH

3.1 Model Formulation

The turbulent flow within and over urban areas cov-
ered with agglomerations of discrete buildings, often
with irregular geometry and spacing, is generally very
complex and possesses a fully three-dimensional struc-
ture. Although the application of CFD to the predic-
tion of the mean flow and turbulence near and around
a single building or within and over a regular array (or,
canopy) of buildings is progressing, this method tends
to require extensive computational resources.

Here, we focus on the formulation of a numerical
model for the prediction of flows within and over a
building array based on an aggregation of groups of
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Figure 1: A 3-D perspective view of the MUST obsta-
cle array.

buildings in the array into a number of ‘drag units’,
with each unit being treated as a porous barrier. This
approach will obviate the need to impose boundary
conditions along the surfaces of all buildings (and
other obstacles) in the urban complex. Before we be-
gin, we present a short note on the notation that will
be used. For any flow variable φ, �φ� will denote the
spatial (volume) average, φ the time average, φ � the de-
parture of φ from its time-averaged value, and φ �� the
departure of φ from its spatially-averaged value. With
the assumption that

�u��
i u��

j � � �u�
i��u

�
j� (15)

(i.e., the dispersive stresses can be ignored) and
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where κ, ε and νt are defined as
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the modeled time-averaged, spatially-averaged
Navier-Stokes (NS) equation can be written as
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� ūi��νt

�
∂� ūi�
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Figure 2: Vertical velocity profiles at y�L� 0, horizon-
tal dosage profiles at z�H � 0�75 and time histories of
c̄�cs and c�rms�cs, at y�L � 0� z�H � 0�75 at the 6.5
row location. For the top two panels and the bottom
left panel: , Æ Experimental data; Model
prediction. For the bottom right panel: Experi-
mental data; Model prediction for concentration
standard deviation using Model 1 for ε c; Model
prediction for concentration standard deviation using
Model 2 for εc. Here, L and H are the streamwise
length and height of the obstacles, respectively.

with Q �
�
� ūi�� ūi�

�1�2
being the magnitude of the

spatially-averaged, time-mean wind speed.

The transport equations for κ and ε can be modeled in
the following the form [see [10] for details]:

∂� ūj�κ
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�
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where P���u�
i��u
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is the production term, and

F � �CDÂ
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� ūk��u�

i��u
�
i��u

�
k�
� �

� (21)

The triple correlation term �u �
i��u

�
i��u

�
k� in Eq. (21) can

be modeled as
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The empirical (closure) constants in Eqs. (17), (19),
(20), and (22) are

Cµ � 0�09� σk � 1� σε � 1�3�

Cε1 � 1�44� Cε2 � 1�92� Cs � 0�3� (23)

3.2 Determination of Drag Coefficient

In this section, we explicitly diagnose a drag coeffi-
cient CD using the results from a high-resolution CFD
simulation of a developing flow over an aligned array
of cubes (3-D buildings) shown in Fig. 3. This array
consists of seven rows of cubes arranged with a plan
area density, λP, of 0.25 and a frontal area density,
λF , of 0.25 [2]. Excellent agreement of the predicted
ū-profile with the experimental data and good confor-
mance between the predicted k values and the corre-
sponding measurements were reported in [11].

To derive a drag coefficient for this array, the following
formula was proposed:

CD�z�Â �
� f̄x

max
�
δ�Q� ū��z�

� � (24)

where

f̄x �
ν
V

�
S

∂ ū
∂n

dS�
1
V

�
S

p̄nxdS (25)

and δ� 0�0025� 1 is chosen here to avoid a possible
singularity problem for the case when � ū� � 0. Both
surface integrals in Eq. 25 can be evaluated explicitly
using the high-resolution CFD results and the resulting
CD�z� over the range of heights 0 � z�H � 1 for each
drag unit in the 3-D building array are shown in Fig. 4.

Although CD for a regular array can be determined rig-
orously, it is a common practice to use empirical for-
mulae (for example, as proposed in [13]) when a real
city such as that shown in Fig. 5 is to be simulated.

z

x

y

   

x=xo
x=xo+2H

x

z

H

H

y

Figure 3: A 3-D perspective view of the aligned array
of cubes (top) and the corresponding ‘drag unit’ (bot-
tom).
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Figure 4: The variation of CD�z�Â for each drag unit
[12].

4 NUMERICAL FRAMEWORK FOR

URBANSTREAM

The urbanSTREAM code developed for the present
study is based on a fully collocated, finite-volume
CFD code STREAM [8], which solves the coupled
system of partial differential equations that model the
three-dimensional flow, turbulence and concentration
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Figure 5: Sample buildings in the city of Ottawa.

fields. Within a non-orthogonal system, the velocity
vector is decomposed into its Cartesian components,
and these are the components to which the momen-
tum equations relate. Diffusive volume-face fluxes
are discretized using a second-order accurate central
differencing scheme. Advective volume-face fluxes
are approximated using a second-order accurate total-
variation-diminishing (TVD) scheme referred to as the
Upstream Monotonic Interpolation for Scalar Trans-
port (UMIST) limiter [9]. The transient term is dis-
cretized using a fully implicit, second-order accurate
three-time-level method. The SIMPLEC algorithm
was used for pressure correction and the widely used
method of Rhie and Chow [16] was adopted to non-
linearly interpolate the cell face velocities from the
nodal values (at the centres of the cells) in order to
avoid checkerboard oscillations in the pressure field,
reflecting a state of pressure-velocity decoupling.

5 WORK IN PROGRESS

5.1 Large-Eddy Simulation (LES)

5.1.1 Conventional LES

When the Navier-Stokes and continuity equations for
incompressible flow are filtered, one obtains

∂ ūi

∂xi
� 0� (26)

∂ ūi

∂t
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∂ ūi ūj
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ρ
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∂xi
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�
uiu j� ūi ūj

�
 �� 

τi j

� (27)

where ūi denotes the spatially filtered velocity compo-
nents with ū1 in the streamwise x1 � x, ū2 in the wall-
normal x2 � y, and ū3 in the spanwise x3 � z directions,
respectively; p̄ is the filtered pressure; and, ρ is the
fluid density. In the context of LES, τ i j in Eq. (27) is
the subgrid-scale (SGS) stress tensor that is associated
with the large-scale (resolved) momentum flux caused
by the action of the small (unresolved) scales, and as
such needs to be modeled. The most common class of
subgrid models for τi j is an eddy viscosity type with
the following form:

τi j�
1
3
τkkδi j � νsgs

�
∂ ūi

∂x j
�
∂ ūj

∂xi

�
��2νsgsS̄i j� (28)

where νsgs is the subgrid-scale viscosity determined
from

νsgs �C∆̄2�S̄�� (29)

Here, ∆̄ is the filter length scale, �S̄� �
�
2S̄i jS̄i j

�1�2 and
C is the model parameter. A number of different meth-
ods have been used to specify C, including the standard
Smagorinsky model (SMG), the dynamic model with
time averaging (DMT) [1], and the localized dynamic
method (LDM) [15].

The geometry of the obstacle array is exhibited in
Fig. 6. To simulate the flow in this array, we used
a computational domain consisting of a sub-channel
unit shown in Fig. 6. This sub-channel unit had di-
mensions of 4H�3�4H�4H for the LES calculations
with 48� 48� 48 grid points, and 4H � 3�4H � 2H
for the RANS calculations with 81� 60� 47 grid
points in the streamwise x-, wall-normal y-, and span-
wise z-directions, respectively. A side view of the
sub-channel unit showing 5 measurement locations is
sketched in Fig. 6 (bottom) in accordance with [14].

Profiles of streamwise velocity ū on a horizontal (x-z)
plane at half cube height (i.e., at y�H � 0�5), and pro-
files of spanwise Reynolds normal stress w�w� on the
vertical plane through the centre of the cube (i.e., at
z�H � 0) at five stations obtained with RANS (using
the standard k-ε turbulence model) and three LES vari-
ants are shown in Fig. 7. It is seen clearly that LES is
better than RANS, in particular, in terms of predictions
of the horizontal profiles of ū. However, the differ-
ences between SMG, DMT and LDM are reasonably
small (details can be found in [4]).
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Figure 6: The geometry of obstacle array and a side
view of the sub-channel unit showing measurement lo-
cations.

5.1.2 Hybrid RANS/LES

The basic idea of the hybrid RANS/LES approach is to
resolve the large scales of turbulence in regions away
from walls using LES and model the unresolved scales
using RANS in the near-wall regions so that a good
compromise between accuracy and efficiency can be
achieved. One successful example, belonging to this
category, is the Detached Eddy Simulation (DES) [18]
when applied to a high-lift airfoil at a high angle of
attack. Although the lift curve (an integral quantity)
is fairly well predicted, the turbulence structure within
the boundary layers may not be. In fact, several recent
studies for a fully developed channel flow using the
hybrid RANS/LES approach have shown that, due to
the incompatibility between the two regions (namely,
spatial filtering in the LES region and time or ensemble
averaging in the RANS region), an artificial buffer-like
layer often occurs at the interface location as shown by
the curve labeled with “Hybrid” in Fig. 8; viz., the ve-
locity gradient ∂ ū�∂y increases suddenly across the in-
terface on the LES side. One possible remedy for this
problem is to introduce a forcing term, based on veloc-
ity fluctuations extracted from a pre-computed DNS
database or generated as a random perturbation, into
the momentum equation. The basic idea can be illus-
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Figure 7: Profiles of streamwise velocity on the hor-
izontal (x-z) plane at half cube height, and profiles
of spanwise Reynolds normal stress on the vertical
plane through the centre of the cube. LDM;

DMT; SMG; RANS; Æ EXP.

trated by the following average streamwise momentum
equation

�ν�νt�
∂ ū
∂y
�u�v� � u2

τ�1� y�� (30)

The effect of the forcing term, introduced in the vicin-
ity of the interface location (more on the LES side),
is to increase νt and, as a result, to reduce ∂ ū�∂y (see
curve labeled with “Hybrid+Force” in Fig. 8). Details
can be found in [7].

5.1.3 Partially Resolved Numerical Simulation
(PRNS)

As discussed in Section 5.1.2, the occurrence of a non-
physical buffer-like layer in the vicinity of the interface
location when hybrid RANS/LES is adopted is due to
flow quantities in the RANS and LES regions being
defined differently: namely, quantities in the LES re-
gion are based on spatial filtering whereas those in the
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Figure 8: Streamwise velocity profiles in wall units
(viz., y� � yuτ�ν) for a fully-developed channel flow.

RANS region is based on statistical averaging. There
is a need to develop a unified approach so that RANS,
URANS, LES and DNS can be put into the same cat-
egory. This can be achieved when the NS equations
are filtered in time, rather than space, as advocated by
Shih & Liu [17] in their PRNS formulation. If the cut-
off frequency, fc, of the temporal filter is set to zero,
PRNS becomes RANS; if the cutoff frequency f c is
set to the reciprocal of the Kolmogorov time scale tK

(i.e., fc � 1�tK � 1�
�
ν�ε), PRNS reduces to DNS.

For URANS and LES, fc of the temporal filter must be
chosen to lie at the range of frequencies corresponding
to the energy-containing and inertia subrange scales of
turbulence, respectively. If the two-equation k-ε turbu-
lence model is used as the basis for the PRNS frame-
work, the generalized turbulent viscosity

νt � FRCP� fc�Cµ
k2

ε
(31)

defines a generalized turbulence model that can be in-
terpreted as a combination of an eddy viscosity model
as used in RANS or a subgrid scale model as used in
LES. Here, FRCP� fc� is a resolution control parameter
function of fc that rescales the eddy viscosity in ac-
cordance to the degree of temporal filtering imposed
on the NS equations. Although the precise functional
form for FRCP� fc� has yet to be determined, it can be
readily seen that for RANS and URANS, FRCP 	 1�

(as fc 	 0�) and for DNS, FRCP 	 0� (as fc 	 1�tK).
The hope here is to obtain a generalized subgrid scale
model which is capable of handling coarse grids simi-
lar to those used in URANS computations for LES for
cases where it is necessary (owing to computational
cost) to locate the cutoff of the temporal filter in the

low-frequency portion of the turbulence energy spec-
trum (or, near the beginning of the inertial subrange in
the energy spectrum).

To illustrate the application of PRNS, calculations
were performed for the disturbed flow over a regular
(aligned) array of 16�16 obstacles, each with a square
cross-section of side length H and height 2H. This ob-
stacle array with frontal and plan area densities of 0.5
and 0.25, respectively, is shown in Fig. 9. As seen
in Fig. 10, both RANS and PRNS predict the stream-
wise mean velocity profiles extremely well. However,
for turbulence kinetic energy levels within the array,
PRNS performs much better in comparison with the
experimental data than RANS.

flow

Figure 9: A regular and aligned array of obstacles,
each with a square cross-section of side length H and
height 2H.

5.1.4 Monotonically Integrated LES (MILES)

The main challenge for the conventional LES is to en-
sure that numerical viscosity is much less than the SGS
viscosity in order to assess the true performance of
SGS models. The common practice is to adopt the cen-
tral difference scheme (CDS) for advection. However,
in order to avoid spurious oscillations when the cell
Peclet number is greater than two, a fine grid is usu-
ally required. If the numerical viscosity is comparable
to the SGS viscosity in the sense that it alone is suf-
ficient to “drain” the energy generated by the energy-
containing scales of turbulence, then an explicit SGS
model is not required. This is the basic idea of the
MILES approach and its theoretical analysis within the
framework of flux-limiting finite-volume discretiza-
tions can be found in [3]. Here, the emphasis is placed
on the relationship between the leading-order numeri-
cal (truncation) errors and the implicit SGS models im-
plied by these errors. In the present study, the UMIST
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Figure 10: Vertical profiles of streamwise mean ve-
locity and turbulence energy predicted and measured
at position E in a unit cell located in the sixth row
of obstacles in the array. Position E lies in the wake
region behind the obstacle. The top row of panels
show the results for (steady-state) RANS and the bot-
tom row of panels show the results for PRNS with
FRCP� fc� � 5�9. Predicted; Æ EXP.

limiter [9] is adopted for the discretization of the non-
linear convective term.

Preliminary results obtained with a fairly coarse grid
of 27� 25� 32 nodes for the obstacle array shown
in Fig. 6 is given in Fig. 11. Interestingly, there is
reasonably good conformance between the predicted
spanwise Reynolds normal stresses and the experimen-
tal measurements for the three x�H locations as seen
in Fig. 11. This agreement is comparable to that ob-
tained using a conventional LES with an explicit dy-
namic SGS model [cf. Fig. 7]. More importantly, the
grid for the sub-domain used here is rather coarse. If
we scale it up to simulate a developing flow over the
regular array of 16�16 obstacles shown in Fig. 9, a to-

tal of more than 5�5�106 nodes will be required. The
implication of this is that MILES is probably the most
viable and efficient approach for the LES simulation of
urban canopy flows simply because the grid resolution
affordable to each building is very limited.
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Figure 11: Profiles of spanwise Reynolds normal
stress in the vertical (x-y) plane through the centre of
the cube (i.e., at z�H � 0): MILES; Æ EXP.

5.2 Inverse Source Determination

5.2.1 Mathematical Formulation

The inverse source determination problem is gener-
ally an ill-posed problem with no unique solution. To
solve this ill-posed problem, it is necessary to formu-
late an approach that (1) incorporates a priori infor-
mation on the possible solutions in a cogent manner
and (2) incorporates quantitatively the lack of total pre-
cision in the problem due to measurement noise and
model (and input) uncertainties. Hence, the inverse
source problem is a problem of inductive logic (or in-
ference) rather than deductive logic. Probability theory
when interpreted as logic is a quantitative theory of in-
ference, just as mathematics is a quantitative theory of
deduction.

The rational framework for the formulation of the in-
verse source problem is to apply Bayesian probability
theory. To this purpose, the application of Bayes’ theo-
rem to the inverse source determination problem takes
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the following form:

p�m�D� I� ∝ p�m�I�
 �� 

prior

p�D�m� I�
 �� 

likelihood

� (32)

where p�m�D� I� is the posterior probability density
function (PDF) for m (source function), I denotes all
the background information available to the observer
(e.g., meteorology, position of detectors, dispersion
model), and D are the concentration data provided by
the detectors. The posterior PDF for m is proportional
to the product of the prior PDF for m, p�m�I�, and the
likelihood function, p�D�m� I�. The prior PDF p�m�I�
encodes all the information available about the puta-
tive source before the receipt of the concentration data
D. The likelihood function, p�D�m� I�, is the PDF
for observing the data D (i.e., measured concentra-
tion data) under “hypothesis” m (given source distri-
bution), accounting for (1) model errors and input er-
rors in the theoretical source-receptor relationship be-
tween the observed concentration and source distri-
bution, and (2) uncertainty arising from the measure-
ment noise in the detector. Assume the i-th concen-
tration datum is measured subject to an additive Gaus-
sian noise with root-mean-square (RMS) experimental
error σD�i and that the modeling error for the concen-
tration datum has a Gaussian RMS errorσT�i (expected
error in the model prediction of the concentration da-
tum given a source model m). Furthermore, it is as-
sumed that the measurement and modeling errors are
statistically independent. Then the likelihood function
reduces to

p�D�m� I� ∝ exp

�
�

1
2
�D�R�m��tΣ�1�D�R�m��

�
� (33)

where
Σ� diag

�
σ2

D�i �σ2
T�i

�N

i�1
� (34)

Here, R is the theoretical source-receptor relationship
and N is the number of concentration data. In assign-
ing the prior probability p�m�I�, exactly what is known
about the source function m will have to be stated.
Assuming that nothing is known about the source pa-
rameters (e.g., source location and strength) we have
p�m�I� � constant, and the posterior probability den-
sity function for the source parameters in this case is
given by

p�m�D� I� ∝ exp

�
�

1
2

N

∑
i�1

�C��xi��Ri�m��2

σ2
D�i �σ2

T�i

	
� (35)

where C��xi� denotes the measured time-averaged con-
centration for the detector at location �xi. To calculate

the posterior probability, we must explicitly specify a
model R�m� (dispersion model) relating the source pa-
rameters to the concentration observed at the receptor
locations; viz., the model concentration Cm at receptor
location�xr is given by Cm��xr� � Rr�m��

In order to efficiently calculate the source-receptor re-
lationship, the following duality relation is used:

�C�h� � �C��Qs�� (36)

where the inner product of f and g is defined as
� f �g� �

�
Ω f gdΩ, h is the receptor response function

with units of m�3 which embodies the measurement
characteristics of a detector (e.g., h � δ��x��xr� for an
ideal point detector at receptor location�xr) and Qs with
units of kg m�3 s�1 is the source density function.
C�, the residence time density function with units of
s m�3, is the dual to the concentration function C and
can be obtained by solving the adjoint of the steady-
state advection-diffusion equation:

�
∂� ūiC��

∂xi
�

∂
∂xi

��
D�

νt

σc

�
∂C�

∂xi

�
� h (37)

subject to the following boundary conditions:�
D�

νt

σc

�
∂C�

∂n
��u 
�nC� � 0 (38)

at the inflow and outflow boundaries of the flow do-
main, and ∂C�

∂z � 0 at all solid surfaces (e.g., ground
surface, walls and roofs of buildings, etc.) and in the
far field.

5.2.2 MUST Array Results

Two different source-receptor configurations are out-
lined below in Tables 1 and 3, with reference to the
MUST array. The posterior PDF was sampled us-
ing Metropolis-Hastings Markov chain Monte Carlo;
statistical estimates of the source parameters are pre-
sented in Tables 2 and 4. In all cases, the source
strength for the continuous release is 3�7799�10�3 kg
m�3 s�1. The combined RMS experimental and mod-

eling errors,
�
σ2

D�i �σ2
T�i

�1�2, are assumed to be 10%.
In the following two examples, x refers to the stream-
wise direction, y refers to the vertical direction, and z
refers to the spanwise direction. It is clear from
the results that the mean and standard deviations of the
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xs ys zs

Source location 1.5 row 0.0H 0.0H
Detector positions 4.5 row 0.0H 0.0H

6.5 row 0.0H 0.0H
9.5 row 0.0H 0.0H

12.5 row 0.0H 0.0H
4.5 row 5.4H -9.0H
4.5 row 5.4H -6.0H
4.5 row 5.4H -3.0H
4.5 row 5.4H 3.0H
4.5 row 5.4H 6.0H
4.5 row 5.4H 9.0H

Table 1: Case 1: Source and detector locations
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Figure 12: Case 1: Histograms of source parameter
samples

actual mean std. dev.
xs 3.665 3.245 6�684�10�1

ys 0.0 0.160 1�318�10�1

zs 0.0 0.000 3�335�10�2

qs 3�7799�10�3 3�7880�10�3 1�472�10�4

Table 2: Case 1: Source parameter estimates

posterior distributions are informative. Adaptive sam-
pling strategies and extra prior information may im-

xs ys zs

Source location 1.5 row 5.4H -4.0H
Detector positions 4.5 row 0.0H 0.0H

6.5 row 0.0H 0.0H
9.5 row 0.0H 0.0H

12.5 row 0.0H 0.0H
4.5 row 5.4H -3.0H
4.5 row 5.4H 3.0H
4.5 row 5.4H 0.0H
6.5 row 5.4H 0.0H

Table 3: Case 2: Source and detector locations

2 3 4 5 6

0.
0

0.
4

0.
8

5.0 5.5 6.0 6.5

0
2

4
6

−4.4 −4.0 −3.6

0
2

4
6

8

0.003 0.005

0
40

0
10

00

xs sample histogram ys sample histogram

zs sample histogram qs sample histogram

xs ys

zs qs

sa
m

pl
e

de
ns

ity
sa

m
pl

e
de

ns
ity

Figure 13: Case 2: Histograms of source parameter
samples

actual mean std. dev.
xs 3.665 3.621 6�573�10�1

ys 5.382 5.499 1�097�10�1

zs -4.032 -4.050 8�171�10�2

qs 3�7799�10�3 4�2822�10�3 6�202�10�4

Table 4: Case 2: Source parameter estimates

prove the results, and remain to be investigated.
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5.3 Adaptive Mesh Refinement

The fully threaded tree (FTT) for adaptive mesh re-
finement (AMR) of regular meshes, developed by
Khokhlov [6] for high-speed compressible flow in-
volving moving shocks, has been adopted here to fur-
ther enhance the capability of urbanSTREAM to re-
solve buildings of different sizes accurately and effi-
ciently in a general urban environment. The main ad-
vantages of FTT are low memory overhead relative to
the unstructured-grid methods and ease of paralleliza-
tion. The logical relationships of FTT can be illus-
trated using a 1-D binary tree shown in Fig. 14. The
corresponding quad- (in 2-D) and oct-trees (in 3-D)
are similar. The key feature of FTT is that it provides
an easy access to every cell, whether a leaf (cell with
no children) or, to its children, neighbours and par-
ents; viz., FTT is a tree threaded in all possible di-
rections. Therefore, the neighbour-neighbour relation
is not reciprocal for leaves of different sizes that face
each other. As an example, in Fig. 14 it is seen that
cell 5 has cell 3 as its neighbour. However, cell 3 has
cell 2 as its neighbour, and not cell 5.

1

2 3

4 5

Figure 14: A 1-D binary, fully threaded tree data struc-
ture.

The advective and diffusive fluxes at a face with adja-
cent neighbours of different sizes, as shown in Fig. 15,
require special care. For example, if a second-order
central difference scheme (CDS) is adopted, the ad-
vective velocity u f is approximated as

u f �
1
3
�uE � �2uP� � (39)

uE � � uE �

�
∂u
∂y

�
E
�yP� yE��

For the diffusive flux �Γ∇φ 
�n� f , where Γ is the diffu-

P

E

f

E’

Figure 15: Grid stencil used to approximate advective
and diffusive fluxes in AMR.

sivity,

�Γ∇φ 
�n� f � Γ f

�
φE � �φP

xE � xP

�
� (40)

φE � � φE �

�
∂φ
∂y

�
E
�yP� yE��

Although standard grid-based matrix solvers cannot be
used on a FTT, the multigrid method with the Gauss-
Seidel smoother and V-cycle can be used here. The
convergence history as a function of work unit for a
lid-driven cavity flow at Re=1000 is shown in Fig. 16.
The velocity vector plot shown in Fig. 17 is on a mesh
refined locally based on the criterion that the absolute
value of the gradient of velocity magnitude be less than
a pre-specified threshold value.

0 100 200 300 400 500
Work units

10-10

10-8

10-6

10-4

10-2

100

102

R
M

S
re

si
d

ua
l

Gauss-Seidel
Multigrid

Figure 16: The convergence histories of a single grid
(SG) and multigrid (MG) solver for a lid-driven cavity
flow.
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Figure 17: The velocity vector plot on a locally refined
mesh for a lid-driven cavity flow.

5.4 Coupling urbanSTREAM With a
Mesoscale Flow Model

The interface between urbanSTREAM and the “ur-
banized” Global Environmental Multiscale/Limited
Area Model (GEM/LAM), developed by Environment
Canada, is demanding in that the information trans-
fer between the two models must honor physical con-
servation laws, mutually satisfy mathematical bound-
ary conditions, and preserve numerical accuracy, even
though the corresponding meshes might differ in struc-
ture, resolution, and discretization methodology. Inter-
grid communication allows the coarse mesh solution
obtained by GEM/LAM to impose boundary condi-
tions on the fine mesh of the urban microscale flow
model (one-way interaction), and furthermore permits
feedback from the fine mesh to the coarse mesh (two-
way interaction).

Some very preliminary work has been undertaken to
couple urbanSTREAM (urban microscale flow model)
with urbanGEM/LAM (urban mesoscale flow model).
In this initial effort, only a one-way coupling between
the two models has been attempted; namely, the flow
predicted by urbanGEM/LAM over the region of in-
terest was used to provide the boundary conditions re-
quired to specify the flow over a small sub-domain of
this region where a high-resolution urban flow simu-
lation was undertaken by urbanSTREAM. This down-
scaling of flow information from urbanGEM/LAM to

urbanSTREAM was undertaken over a sub-domain of
downtown Ottawa (see Fig. 18). In a future effort,
the buildings surrounding this sub-domain (see Fig. 5)
will be parameterized using the drag-force approach
described in Section 3.
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Figure 18: Flow over a block of buildings within the
city of Ottawa.

6 CONCLUSIONS

Models for the prediction of the complex flow in the
urban environment at the microscale have been devel-
oped, implemented, and validated against a number of
comprehensive and detailed data sets obtained from
wind tunnel and water channel simulations of flow
over and through various building arrays. The mod-
els are based on a Reynolds-averaged Navier-Stokes
(RANS) approach with the hierarchy of turbulence
correlation closure models based on a phenomenolog-
ical two-equation model for the turbulence kinetic en-
ergy (k) and viscous dissipation rate (ε).

Quantitatively, it was found that the prediction perfor-
mance of these various steady-state RANS models was
generally good – the quantitative agreement for the
mean velocity is good, although the turbulence kinetic
energy is generally underestimated by the models. An
important conclusion of this study is that the stan-
dard k-ε turbulence-closure model with a linear eddy
viscosity is perhaps the simplest complete turbulence

XXI



model that could be used for the prediction of urban
flows on the microscale. This model may be useful as
a general-purpose simulator of small-scale urban flows
because it is robust and simple enough to be tractable
numerically, and hence not require excessive compu-
tation time.

In the models described above, all the buildings in
the cityscape were resolved explicitly in the sense that
boundary conditions were imposed at all walls and
roofs of every building. To reduce the computational
cost of this approach, we investigated also the utility
of representing groups of buildings in the cityscape in
terms of a distributed drag force. To apply the dis-
tributed drag force model, we require the assignment
of an appropriate value for the drag coefficient for a
canopy consisting of an arbitrary geometrical arrange-
ment of buildings. Although we were able to deter-
mine the drag coefficient for an regular array using
high-resolution CFD results, empirical formulae pro-
posed in the literature (e.g., [13]) will be employed
when we conduct a real city simulation.

Finally, some effort was expended in interfacing the
urban microscale flow model with urban databases.
A capability for ingesting ShapeFiles (which stores
non-topological geometry and attribute information
for building/obstacle features in a data set) has been
developed. This capability permits building data in a
ShapeFile to be ingested directly into the urban mi-
croscale flow model, and an automatic scheme for gen-
eration of grids about the buildings imported within a
specified flow domain has been designed and imple-
mented. The grid information generated here can be
imported directly into urbanSTREAM.
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